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Abstract In this paper, we consider the coupled Lane–Emden boundary value prob-
lems in catalytic diffusion reactions by the Adomian decomposition method. First, we
utilize systems of Volterra integral forms of the Lane–Emden equations and derive the
modified recursion scheme for the components of the decomposition series solutions.
The numerical results display that the Adomian decomposition method gives reliable
algorithm for analytic approximate solutions of these systems. The error analysis of
the sequence of the analytic approximate solutions can be performed by using the error
remainder functions and the maximal error remainder parameters, which demonstrate
an approximate exponential rate of convergence.
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1 Introduction

The Lane–Emden equation was first studied by astrophysicists Jonathan Homer Lane
and Robert Emden, where they considered the thermal behavior of a spherical cloud
of gas acting under the mutual attraction of its molecules and subject to the classical
laws of thermodynamics [15]. The well–known Lane–Emden equation has been used
to model several phenomena in mathematical physics and astrophysics such as the
theory of stellar structure, the thermal behavior of a spherical cloud of gas, isothermal
gas spheres, and the theory of thermionic currents. A substantial amount of work
has been done on these types of problems for various structures [15,16,18–24]. The
singular behavior that occurs at r = 0 is the main difficulty of the Lane–Emden
equations.

Systems of Lane–Emden equations arise in the modelling of several physical phe-
nomena, such as pattern formation, population evolution, chemical reactions, and so
on [11,12,17,25].

In [24], the Adomian decomposition method (ADM) was used to solve the Volterra
integral form of the Lane–Emden equation with initial values and boundary conditions.
In [23], the initial value problem for the systems of the Volterra integral forms of the
Lane–Emden equations was solved by the ADM.

The ADM [1–4,9,13,14,21] is a well–known systematic method for solving linear
and nonlinear equations, including ordinary differential equations, partial differential
equations, integral equations, integro-differential equations, etc. The method permits
us to solve both nonlinear initial value problems and boundary value problems. For
a comprehensive bibliography featuring many new engineering applications and a
modern review of the ADM, see [9,14].

Duan and Rach [8] proposed a new modified recursion scheme for the resolu-
tion of multi-order and multi-point boundary value problems for nonlinear ordinary
and partial differential equations by the ADM. The new approach, including Duan’s
convergence parameter [6,8,10], provides a significant computational advantage by
allowing for the acceleration of convergence and expansion of the interval of conver-
gence during calculations of the solution components for nonlinear boundary value
problems. All of the boundary conditions were used before we derive a modified
recursion scheme without any undetermined coefficients when computing successive
solution components. This modification also avoids solving a sequence of nonlin-
ear algebraic equations for the undetermined coefficients fraught with multiple roots,
which is required to complete calculation of the solution by several prior modified
recursion schemes using the ADM.

We aim in this work to apply Duan-Rach modified recursion scheme in the ADM
to the mixed boundary value problems for system of the Lane–Emden equations. The
coupled Lane–Emden boundary value problems in catalytic diffusion reactions are
solved. We will show that using the integral form facilitates the computational work
and overcomes the singularity behavior at r = 0. The error analysis can be performed
by using the error remainder functions and the maximal error remainder parameters,
which demonstrate an approximate exponential rate of convergence.
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2 The Volterra integral form and the modified ADM

We consider the mixed boundary value problems for the coupled Lane–Emden equa-
tions

u′′ (r)+ 2

r
u′ (r)+ f1 (u (r) , v (r)) = 0, (1)

v′′ (r)+ 2

r
v′ (r)+ f2 (u (r) , v (r)) = 0, (2)

u′ (0) = 0, u (1) = β1, v
′ (0) = 0, v (1) = β2. (3)

Applying the equivalent Volterra integral forms for Eqs. (1) and (2), we obtain [23,
24]

u (r) = u (0)−
r∫

0

τ
(

1 − τ

r

)
f1 (u (τ ) , v (τ )) dτ, (4)

v (r) = v (0)−
r∫

0

τ
(

1 − τ

r

)
f2 (u (τ ) , v (τ )) dτ. (5)

Next we use algebraic manipulation to determine the values of the undetermined
coefficients u(0) and v(0). Substituting the boundary values at r = 1 in Eq. (3) we
have

β1 = u (0)−
1∫

0

τ (1 − τ) f1 (u (τ ) , v (τ )) dτ,

β2 = v (0)−
1∫

0

τ (1 − τ) f2 (u (τ ) , v (τ )) dτ.

Thus we obtain the unprescribed conditions

u (0) = β1 +
1∫

0

τ (1 − τ) f1 (u (τ ) , v (τ )) dτ, (6)

v (0) = β2 +
1∫

0

τ (1 − τ) f2 (u (τ ) , v (τ )) dτ. (7)

Upon substitution of u (0) and v (0) into Eqs. (4) and (5), we obtain the system of
two-coupled nonlinear Fredholm-Volterra integral equations as
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u (r) = β1 +
1∫

0

τ (1 − τ) f1 (u (τ ) , v (τ )) dτ −
r∫

0

τ
(

1 − τ

r

)
f1 (u (τ ) , v (τ )) dτ,

(8)

v (r) = β2 +
1∫

0

τ (1 − τ) f2 (u (τ ) , v (τ )) dτ −
r∫

0

τ
(

1 − τ

r

)
f2 (u (τ ) , v (τ )) dτ.

(9)

Applying the Adomian decomposition series and the series of the two-variable
Adomian polynomials [4,5,7,13], we have

u (r) =
∞∑

n=0

un (r), v (r) =
∞∑

n=0

vn (r), (10)

and

f1 (u (τ ) , v (τ )) =
∞∑

n=0

A1,n (τ ), f2 (u (τ ) , v (τ )) =
∞∑

n=0

A2,n (τ ), (11)

where the two-variable Adomian polynomials A1,n(τ ) are defined as

A1,n(τ ) = 1

n!
dn

dλn
f1

( ∞∑
n=0

un (τ ) λ
n,

∞∑
n=0

vn (τ ) λ
n

)∣∣∣∣∣
λ=0

, (12)

and the two-variable Adomian polynomials A2,n(τ ) have similar expression. For new,
convenient algorithms and MATHEMATICA subroutines of the multivariable Ado-
mian polynomials see [5,7].

Upon substitution of the decomposition series into Eqs. (8) and (9), we obtain

∞∑
n=0

un (r) = β1 +
1∫

0

τ (1 − τ)

∞∑
n=0

A1,n (τ ) dτ −
r∫

0

τ
(

1 − τ

r

) ∞∑
n=0

A1,n (τ ) dτ,

(13)

∞∑
n=0

vn (r) = β2 +
1∫

0

τ (1 − τ)

∞∑
n=0

A2,n (τ ) dτ −
r∫

0

τ
(

1 − τ

r

) ∞∑
n=0

A2,n (τ ) dτ.

(14)
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Integrating term by term yields

∞∑
n=0

un (r) = β1 +
∞∑

n=0

1∫

0

τ (1 − τ) A1,n (τ ) dτ −
∞∑

n=0

r∫

0

τ
(

1 − τ

r

)
A1,n (τ ) dτ,

(15)

∞∑
n=0

vn (r) = β2 +
∞∑

n=0

1∫

0

τ (1 − τ) A2,n (τ ) dτ −
∞∑

n=0

r∫

0

τ
(

1 − τ

r

)
A2,n (τ ) dτ.

(16)

We set the system of two-coupled Duan-Rach modified recursion schemes as [8]

u0 (r) = β1, v0 (r) = β2, (17)

un+1 (r) =
1∫

0

τ (1 − τ) A1,n (τ ) dτ −
r∫

0

τ
(

1 − τ

r

)
A1,n (τ ) dτ , n ≥ 0, (18)

vn+1 (r) =
1∫

0

τ (1 − τ) A2,n (τ ) dτ −
r∫

0

τ
(

1 − τ

r

)
A2,n (τ ) dτ, n ≥ 0. (19)

We set the system of two-coupled Duan’s parametrized recursion schemes with
decomposition of the two convergence parameters as [6,8,10]

c1 =
∞∑

n=0

c1,n, c2 =
∞∑

n=0

c2,n, (20)

u0(r) = β1 − c1, v0 (r) = β2 − c2, (21)

un+1(r) = c1,n +
1∫

0

τ (1 − τ) A1,n (τ ) dτ −
r∫

0

τ
(

1 − τ

r

)
A1,n (τ ) dτ , n ≥ 0,

(22)

vn+1 (r) = c2,n +
1∫

0

τ (1 − τ) A2,n (τ ) dτ −
r∫

0

τ
(

1 − τ

r

)
A2,n (τ ) dτ, n ≥ 0.

(23)

Then we obtain the two approximate solutions as

φm+1 (r) =
m∑

n=0

un (r), ψm+1 (r) =
m∑

n=0

vn (r). (24)
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If the exact solution is unknown, which is most often the case for nonlinear engi-
neering equations, and boundary value problems in catalytic diffusion reactions, we
compute the following error remainder functions and the maximal error remainder
parameters as the error analysis for the sequence of approximate solutions. The error
remainder functions and the maximal error remainder parameters are

E R 〈1〉
n (r) = φ′′

n (r)+ 2

r
φ′

n(r)+ f1(φn(r), ψn(r)), (25)

E R 〈2〉
n (r) = ψ ′′

n (r)+ 2

r
ψ ′

n(r)+ f2(φn(r), ψn(r)), (26)

and

M E R 〈1〉
n = max

0≤r≤1

∣∣∣E R 〈1〉
n (r)

∣∣∣ , M E R 〈2〉
n = max

0≤r≤1

∣∣∣E R 〈2〉
n (r)

∣∣∣ , (27)

which are a measure of how well the sequence of solution approximations satisfy the
original nonlinear differential equation.

3 The boundary value problem in catalytic diffusion reactions

We solve the mixed BVP for the coupled Lane–Emden equations with the quadratic
and product nonlinearities as [11]

u′′ (r)+ 2

r
u′ (r)− k11u2 (r)− k12u (r) v (r) = 0, (28)

v′′ (r)+ 2

r
v′ (r)− k21u2 (r)− k22u (r) v (r) = 0, (29)

u′ (0) = 0, u (1) = β1, v
′ (0) = 0, v (1) = β2, (30)

where we make the correspondences for the nonlinearities as

f1 (u (r) , v (r)) = −k11u2 (r)− k12u (r) v (r) , (31)

f2 (u (r) , v (r)) = −k21u2 (r)− k22u (r) v (r) . (32)

The boundary value problem (28)–(30) occurs in catalytic diffusion reactions [11].
The system parameters β1, β2, k11, k12, k21 and k22 can be specified for the actual
chemical reactions. Flockerzi and Sundmacher [11] considered the qualitative analysis
for the solutions.

For the common quadratic nonlinearity, we have

u2 (r) =
∞∑

n=0

n∑
m=0

un−m (r) um (r), (33)

and for the common product nonlinearity, we have
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u (r) v (r) =
∞∑

n=0

n∑
m=0

un−m (r) vm (r), (34)

where the corresponding Adomian polynomials are

Bn =
n∑

m=0

un−m (r) um (r) and Cn =
n∑

m=0

un−m (r) vm(r), (35)

respectively. Thus the two Adomian polynomials A1,n and A2,n are

A1,n = −k11 Bn − k12Cn, A2,n = −k21 Bn − k22Cn . (36)

By the recursion schemes (17)–(19), we calculate that

u0 (r) = β1, v0 (r) = β2,

u1 (r) = 1

6

(
−1 + r2

)
β1 (k11β1 + k12β2) ,

v1 (r) = 1

6

(
−1 + r2

)
β1 (k21β1 + k22β2) ,

u2(r) = 1

360

(
7 − 10r2 + 3r4

)
β1

(
2k2

11β
2
1 + 3k11k12β1β2+

k12

(
k21β

2
1 + β2 (k22β1 + k12β2)

))
,

v2(r) = 1

360

(
7 − 10r2 + 3r4

)
β1 (k22β2 (k22β1 + k12β2)+ k21β1 (k22β1+2k12β2)

+k11β1 (2k21β1 + k22β2)) , . . . .

We take β1 = 1, β2 = 2, k11 = 1, k12 = 2/5, k21 = 1/2, k22 = 1, and calculate
the sequences of the approximate solutions as

φ2(r) = 7

10
+ 3r2

10
,

φ3(r) = 7357

9000
+ 119r2

900
+ 151r4

3000
,

φ4(r) = 1443251

1890000
+ 59563r2

270000
+ 761r4

90000
+ 4609r6

630000
,

φ5(r) = 128096033

162000000
+ 9799289r2

56700000
+ 978857r4

27000000
− 44143r6

56700000
+ 222571r8

226800000
, . . . ,
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Fig. 1 The curves of φn(r) versus r for a n = 2 (solid line), n = 3 (dot line), n = 4 (dash line), n = 5
(dot-dash line); b n = 6 (solid line), n = 7 (dot line), n = 8 (dash line)
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Fig. 2 The curves of ψn(r) versus r for a n = 2 (solid line), n = 3 (dot line), n = 4 (dash line), n = 5
(dot-dash line); b n = 6 (solid line), n = 7 (dot line), n = 8 (dash line)

and

ψ2(r) = 19

12
+ 5r2

12
,

ψ3(r) = 6253

3600
+ 71r2

360
+ 79r4

1200
,

ψ4(r) = 1261171

756000
+ 33467r2

108000
+ 457r4

36000
+ 2321r6

252000
,

ψ5(r) = 772204247

453600000
+ 5665609r2

22680000
+ 56881r4

1200000
− 18271r6

22680000
+ 21919r8

18144000
, . . . .

In Fig. 1, the curves of φn(r) versus r for n = 2 through 8 are plotted. In Fig. 2,
the curves of ψn(r) versus r for n = 2 through 8 are plotted.

Next, we calculate the error remainder functions

E R 〈1〉
n (r) = φ′′

n (r)+ 2

r
φ′

n(r)− k11φ
2
n(r)− k12φn(r)ψn(r), (37)

E R 〈2〉
n (r) = ψ ′′

n (r)+ 2

r
ψ ′

n(r)− k21φ
2
n(r)− k22φn(r)ψn(r), (38)
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Fig. 3 The curves of the error remainder functions E R 〈1〉
n (r) in a and E R 〈2〉

n (r) in b for n = 2 (solid line),
n = 3 (dot line), n = 4 (dash line), n = 5 (dot-dash line), n = 6 (dot-dot-dash line), n = 7 (dot-dash-dash
line) and n = 8 (dot-dot-dash-dash line)

Table 1 The maximal error
remainder parameters M E R 〈1〉

n

and M E R 〈2〉
n

n M E R 〈1〉
n M E R 〈2〉

n

2 0.866667 1.14667

3 0.442824 0.570630

4 0.230943 0.293825

5 0.126713 0.159885

6 0.0715579 0.0898227

7 0.0416048 0.0520260

8 0.0246787 0.0307762

9 0.0149069 0.0185503

10 0.00913022 0.0113429

11 0.00566118 0.00702355

12 0.00354550 0.00439385

13 0.00224019 0.00277360

14 0.00142608 0.00176425

15 0.000913892 0.00112983

16 0.000589065 0.000727815

and the maximal error remainder parameters

M E R 〈1〉
n = max

0≤r≤1

∣∣∣E R 〈1〉
n (r)

∣∣∣ , M E R 〈2〉
n = max

0≤r≤1

∣∣∣E R 〈2〉
n (r)

∣∣∣ , (39)

using MATHEMATICA. The curves of the error remainder functions E R 〈1〉
n (r) and

E R 〈2〉
n (r) for n = 2 through 8 are plotted in Fig. 3.

The maximal error remainder parameters M E R 〈1〉
n and M E R 〈2〉

n are calculated by
using the MATHEMATICA command ‘NMaximize’ and the values for n = 2 through
16 are listed in Table 1. The logarithmic plots of M E R 〈1〉

n and M E R 〈2〉
n for n = 2

through 16 are displayed in Fig. 4, where the dots are almost on a straight line, which
demonstrates an approximate exponential rate of convergence. MATHEMATICA code
generating Table 1 and Fig. 4 is attached in “Appendix”.

123



264 J Math Chem (2014) 52:255–267

0 5 10 15

0.001

0.005
0.010

0.050
0.100

0.500
1.000

n

M
E

R
n1

(a)

0 5 10 15

0.001

0.005
0.010

0.050
0.100

0.500
1.000

n

M
E

R
n2

(b)

Fig. 4 Logarithmic plots of the maximal error remainder parameters M E R 〈1〉
n in a and M E R 〈2〉

n in b for
n = 2 through 16

Next we consider the modified recursion scheme (20)–(23) with the parameters’
choices c1 = c2 = 0.15, c1,n = c2,n = 0.15/2n+1, n = 0, 1, 2, . . . . The calculated
solution approximations are listed below,

φ2(r) = 2799

4000
+ 901r2

4000
,

φ3(r) = 56117189

72000000
+ 1080973r2

7200000
+ 791027r4

24000000
,

φ4(r) = 231724603307

302400000000
+ 8389876921r2

43200000000
+ 238803197r4

14400000000
+ 420463703r6

100800000000
, . . . ,

ψ2(r) = 7693

4800
+ 1547r2

4800
,

ψ3(r) = 48923933

28800000
+ 632581r2

2880000
+ 423419r4

9600000
,

ψ4(r) = 202732690507

120960000000
+ 4789506857r2

17280000000
+ 130778941r4

5760000000
+ 23940879r6

4480000000
, . . . .

For the new solution approximations, the maximal error remainder parameters
M E R 〈1〉

n and M E R 〈2〉
n are calculated and the values for n = 2 through 16 are listed

in Table 2. The logarithmic plots of M E R 〈1〉
n and M E R 〈2〉

n for n = 2 through 16 are
displayed in Fig. 5. We see that the new solution approximations have higher accuracy
than the original solution approximations with the same term number.

4 Conclusions

In this work we proposed a reliable approach to handle a coupled Lane–Emden bound-
ary value problems in catalytic diffusion reactions. We employed the Volterra integral
forms, that we derived in [23,24] for the singular Lane–Emden ordinary differential
equations. We then used the integral forms to formally derive the unprescribed initial
condition u(0) and v(0). The powerful ADM was employed to determine the series
solution that may converge to the exact solution if such a closed form solution exists,
or we may use the obtained series for numerical computation. Numerical examples
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Table 2 The new maximal error
remainder parameters n M E R 〈1〉

n M E R 〈2〉
n

2 0.413252 0.567430

3 0.236267 0.309872

4 0.0643409 0.0851094

5 0.0479165 0.0609052

6 0.0209370 0.0251111

7 0.0109410 0.0136470

8 0.00621286 0.00732628

9 0.00335204 0.00328331

10 0.00179895 0.00209486

11 0.000960968 0.00111331

12 0.000511238 0.000589608

13 0.000270998 0.000311281

14 0.000143189 0.000163880

15 0.0000754396 0.0000860597

16 0.0000396424 0.0000450898

0 5 10 15
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0.001

0.01

0.1

n

M
E
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n1
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0.001
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M
E
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0 5 10 15
n

(b)

Fig. 5 Logarithmic plots of the new maximal error remainder parameters M E R 〈1〉
n in a and M E R 〈2〉

n in
b for n = 2 through 16

are investigated to show the strength of the proposed scheme. The obtained results
emphasize the efficiency of the new approach. We also demonstrate that a parame-
trized recursion scheme results in the solution approximations with higher accuracy.

Acknowledgments This work was supported in part by the National Natural Science Foundation of China
(Nos. 11201308; 11171295) and the Innovation Program of Shanghai Municipal Education Commission
(No. 14ZZ161).

5 Appendix: MATHEMATICA code generating Table 1 and Fig. 4

A[n_]:=-k11*Sum[u[n-m]*u[m] ,{m,0,n}]-k12*Sum[u[n-m]*v[m] ,{m,0,n}];
B[n_]:=-k21*Sum[u[n-m]*u[m] ,{m,0,n}]-k22*Sum[u[n-m]*v[m] ,{m,0,n}];
u[0]=b1; v[0]=b2;
b1=1; b2=2; k11=1;k12=2/5; k21=1/2;k22=1;
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For[n=0,n<=14,n++,
u[n+1]=Integrate[s (1-s) (A[n]/.r->s),{s,0,1}]-
Integrate[s (1-s/r) (A[n]/.r->s),{s,0,r}];
v[n+1]=Integrate[s (1-s) (B[n]/.r->s),{s,0,1}]-
Integrate[s (1-s/r) (B[n]/.r->s),{s,0,r}];]

ph[n_]:=Sum[u[k],{k,0,n-1}]; ps[n_]:=Sum[v[k],{k,0,n-1}];
ER1[n_]:=D[ph[n],{r,2}]+2*Simplify[D[ph[n],r]/r]-
k11*ph[n]ˆ2-k12*ph[n]*ps[n];
ER2[n_]:=D[ps[n],{r,2}]+2*Simplify[D[ps[n],r]/r]-
k21*ph[n]ˆ2-k22*ph[n]*ps[n];
rr=Table[k1,{k1,2,16}];
da1=Table[NMaximize[{Abs[ER1[k1]],0<=r<=1},{r},AccuracyGoal->30,
PrecisionGoal->30,WorkingPrecision->30][[1]],{k1,2,16}];
da2=Table[NMaximize[{Abs[ER2[k1]],0<=r<=1},{r},AccuracyGoal->30,
PrecisionGoal->30,WorkingPrecision->30][[1]],{k1,2,16}];
F4a=ListLogPlot[Table[{rr[[n]],da1[[n]]},{n,1,Length[rr]}],
PlotRange->All,Frame->True];
F4b=ListLogPlot[Table[{rr[[n]],da2[[n]]},{n,1,Length[rr]}],
PlotRange->All,Frame->True];
{N[da1,6],N[da2,6],F4a,F4b}
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